
Chapter 14: Project and Process Learning and Maturity – Copyright 2009 – James R. Burns – Page 1

Chapter 14: Project and Process Learning
and Maturity

 Learning Objectives

 Monday-morning Quarterbacking

 System Performance Metrics

 Learning vs. Maturity

 Organizational and Team Learning

 The Capability Maturity Model

 The Project Maturity Model

 The Team Software Process

 The Personal Software Process

 Capability Maturity Model Integration

 The Learning Curve

 Summary

 Exercises

 References

Chapter 14: Project and Process Learning and Maturity – Copyright 2009 – James R. Burns – Page 2

Project Management Process Maturity Model:

 The Corporate Pursuit for Perfection

In today’s world, organizations are searching for any advantage that will set them

apart from their competition. Project management has recently been defined as the crux

Project Performance

Chapter 14: Project and Process Learning and Maturity – Copyright 2009 – James R. Burns – Page 3

of a successful business. Many organizations are taking project management to the next

level by re-engineering their commitment to the management of projects as a discipline,

not just as a collection of procedures in which there exists no uniformity between

projects. It has become a mission-critical process and core competency for the “Big

Five,” as well as almost every successful business in America. The journey to become the

best begins with an honest assessment of the organizations current state of project

management and then focusing all attention on the concept of process improvement.

Lord Kelvin said over a century ago “When you can measure what you are

speaking about, and express it in numbers, you [may] know something about it; but when

you cannot express it, when you cannot measure it in numbers, your knowledge is of a

meager and unsatisfactory kind; it may be the beginning of knowledge, buy you have

scarcely in your thoughts advanced to the state of Science.” [cs]When comparing this

philosophy to the practice of project management, Micro Frame Technologies, Inc. and

Project Management Technologies, Inc. developed the Project Management Process

Maturity Model to help determine the overall quality of an organization’s project

management techniques. This model provides a framework for helping organizations

improve their project management functions and it also includes a set of phased maturity

descriptions, improvement criteria, operating metrics, and questions that can be used to

assess an organizations current level of project maturity. The objective of the Model is to

improve the ability of organizations to consistently achieve cost, schedule, technical, and

customer satisfaction goals [eazy].

Chapter 14: Project and Process Learning and Maturity – Copyright 2009 – James R. Burns – Page 4

There are five phases of the Process Maturity Model. Each phase defines

characteristics concerning an organization’s project management techniques. Certain

steps need to be achieved in order for the firm to reach the next level. As an organization

climbs the rungs of the model, project risk decreases while the organization’s

competitiveness among rival firms’ increases. The maturity model begins with the

Initial phase, then progresses to Repeatable, Defined, Managed and finally Optimized.

Each phase is defined as follows:

The first phase of the Process Maturity Model is the Initial Phase. In this phase

software process are ad hoc and chaotic. No planning is done and projects are just

thrown together. Processes are not defined and project success depends on the

individual effort of the team members, not that of the team. Determining the scope,

duration, and cost of the project is nearly impossible due to the unstable environment in

which the project is being performed and the fact that software processes are constantly

being changed or modified as the project progresses [Burns]. Any sort of change in this

phase is good. In order to reach the next level of the Process Maturity Model,

Chapter 14: Project and Process Learning and Maturity – Copyright 2009 – James R. Burns – Page 5

organizations must undergo rigorous project management techniques where the

organization introduces and monitors basic management processes. Project estimation,

scheduling, and tracking skills need to be addressed as well as change control and error

tracking. Upon completion of these steps, an organization has reached a milestone in

which most organizations have yet to achieve.

An organization has reached the Repeatable phase when basic project

management policies are procedures are established. Cost, schedule and functionality are

tracked by module and task. Every new project is started with a comparison of the firm’s

past projects. The successes or failures of those past projects are analyzed and a process

discipline is put into place to repeat the success of those past projects. Any problems that

are encountered are identified, documented, and archived. Project standards are defined

and the project teams work with their customers and subcontracts to establish stable,

managed working environments[sqi]. The disadvantages to being in the repeatable phase

are numerous. First, there is a lack of well-defined testing. The lack of error data for

earlier project activities and the lack of training are another handicap. The major

drawback to the repeatable phase is that there is nobody tasked to identified, develop and

make available documented processes with is the best practice.

 The third phase of the Project Management Process Maturity Model is referred to

as Defined. In order to obtain this phase, organizations must establish a Software

Engineering Process Group (SEPG). This group is responsible for introducing company-

wide standards regarding project management. They must perform inspections, ensuring

those standards are being followed. More formal testing processes such as coverage

analysis and traceability also need to be implemented. Once done, all software processes

Chapter 14: Project and Process Learning and Maturity – Copyright 2009 – James R. Burns – Page 6

are to be documented. Those processes then need to be standardized and integrated

organization-wide. In order to gain employee support, training programs are

implemented so that employees become familiar with the new procedures and do not

reject them. During each project, a peer review process is used to enhance product

quality. Process capability needs to be stable and based on a common understanding of

processes, roles, and responsibilities in a defined process [cse]. Reaching that “common

understanding” of an organization’s project management processes is very difficult to

acquire, but once obtained, the firm is defined as mature and ready to proceed to phase

four.

 The Managed phase of the Project Management Process Maturity Model is

reached through measuring and planning. The SEPG must establish aggressive, but

attainable quality goals. These goals need to be expressed quantitatively and in the form

of a plan. Product quality and productivity are collected and measured, then actual

progress is compared to planed progress to help determine project success.

Measurements are taken throughout the life of the project. Using these measurements, a

productivity and quality database is defined. Product cycle time, number of defects,

completeness, complexity, reliability, etc. are measured and archived in the database.

This allows projects to achieve control by narrowing the variation in performance to

within acceptable boundaries defined in the project plan. In the fourth phase reusability

is a focal point. Project results are always being analyzed until an optimum method is

reached, then that method is reused again and again to produce identical results [Burns].

 The maturity model ends with the Optimized phase. This phase is knows as “The

Phantom Phase [cs].” It is called this because it only exists on paper. No recorded

Chapter 14: Project and Process Learning and Maturity – Copyright 2009 – James R. Burns – Page 7

organization has yet accomplished this level of project maturity. In order to reach this

level, an organization must focus on continuous improvement. This improvement is

accomplished by testing innovative ideas and technologies then enabling quantitative

feedback in order to enhance them. Improvement is very difficult in this phase. It can

only occur from incremental advancements in existing processes [uregina]. Since those

processes are so well honed from progressing through the other four phases,

improvements in existing technologies is really the only way to catapult a company into

this fifth phase.

Though the Process Maturity Model has benefited organizations worldwide, it

does have some weaknesses. One frailty that the model possesses is that it does not

address expertise in particular application domains. It also does not advocate specific

software technologies, or suggest how to select, hire, motivate, and retain competent

people [sqi]. Ultimately, a project’s success does depend on the quality of those actually

performing the project, but given the right tools, continuos project success can become a

reality.

 The Project Management Process Maturity Model is relatively new to the

corporate world. Most corporations reside in the first two levels. The most successful

organizations have entered the third phase, while only 1% has reached the fourth. While

reaching the fifth level does not yet seem feasible, organizations are starting to think

about project management as a discipline, and if they continue to do so, corporate

Optimization is not that far away.

Chapter 14: Project and Process Learning and Maturity – Copyright 2009 – James R. Burns – Page 8

Corporate America Process Maturity

Levels

75%

15%

9%1%

1 2 3 4 Phase

Chapter 14: Project and Process Learning and Maturity – Copyright 2009 – James R. Burns – Page 9

BIBLIOGRAPHY

Burns, James. Texas Tech University: Lecture Notes, “Capable.ppt”

Http://www.cs.jmu.edu/users/foxcj/cs555/Unit10/Process/

Http://www.cse.unl.edu/~scotth/courses/461-fall98/week5-6/index.htm

Http://www.sqi.gu.edu.au/CMM/TR24/tr24.html

Http://www.eazy.net/~pmt/

Http://uregina.ca/~benedicl/Lectures/Ense474/Lecture3/ENSE474Lecture3/

THE CAPABILITY MATURITY MODEL

This model, which was developed by the Software Engineering Institute at Carnegie

Mellon University, suggests five stages of improvement through which software

development and maintenance organizations should go through.

IMMATURE SOFTWARE ORGANIZATIONS

 Processes are ad hoc, and occasionally chaotic

 Processes improvised by practitioners

 Testing and reviews usually curtailed under stress.

 Quality is unpredictable

 Costs and schedules are usually exceeded

 Reactionary management is usually firefighting

 Success rides on individual talent and heroic effort

 Technology benefits are lost in the noise

MATURE SOFTWARE ORGANIZATIONS

 Processes are defined and documented.

 Management plans, monitors, and communicates

 Roles and responsibilities are clear

 Product and process are measured

 Quality, costs, and schedules are predictable

 Management committed to continuous improvement

 Technology used effectively within defined process

 Process--the set of activities, methods, practices, and transformations that

integrate managers and software engineers in using technology to develop and

maintain software

Software Process Definition

Project Planning

http://www.cs.jmu.edu/users/foxcj/cs555/Unit10/Process/
http://www.cse.unl.edu/~scotth/courses/461-fall98/week5-6/index.htm
http://www.sqi.gu.edu.au/CMM/TR24/tr24.html
http://www.eazy.net/~pmt/
http://uregina.ca/~benedicl/Lectures/Ense474/Lecture3/ENSE474Lecture3/sld001.htm
http://uregina.ca/~benedicl/Lectures/Ense474/Lecture3/ENSE474Lecture3/sld001.htm

Chapter 14: Project and Process Learning and Maturity – Copyright 2009 – James R. Burns – Page 10

Project Management

Software Engineering Procedures

Software standards

Software Quality Evaluation

Software Configuration management

The Five Levels of Software Process Maturity

 INITIAL

 REPEATABLE

 DEFINED

 MANAGED

 OPTIMIZING

INITIAL

Initially, the software process is ad hoc, even chaotic. The software processes are not

defined. Success depends on individual effort. The environment is not stable. The

benefits of software engineering practices are undermined. Planning is nonexistent or

ineffective. Process capability is unpredictable because the software process is constantly

changed or modified as the work progresses

REPEATABLE

Basic project management policies and procedures are established. Cost, schedule and

functionality are tracked by module and task. A process discipline is put in place to

repeat earlier successes. Managing new projects is based on experience with similar

projects. Basic software management controls are installed. Estimations of cost and time

to complete are based on history for similar projects. Problems are identified and

documented. Software requirements are baselined. Project standards are defined.

Project teams work with their customers and subcontractors to establish stable, managed

working environments. Process is under the control of a project management system

that is driven by performance on previous projects. A project performance database is

defined and populated.

DEFINED

The software process is documented. The software process is standardized and integrated

organization-wide. All projects use a documented and approved version of the

organization\rquote s process of developing and maintaining software. A software

engineering process group facilitates process definition and improvement efforts.

Organization-wide training programs are implemented\par. The organization-wide

standard software process can be refined to encompass the unique characteristics of the

project. A peer review process is used to enhance product quality. Process capability is

stable and based on a common understanding of processes, roles, and responsibilities in a

defined process.

MANAGED

Quantitative quality goals are defined. Product quality and productivity are measured

and collected. Both processes and products are quantitatively understood. Both

processes and products are controlled using detailed measures. A productivity and

Chapter 14: Project and Process Learning and Maturity – Copyright 2009 – James R. Burns – Page 11

quality database is defined. Projects achieve control by narrowing the variation in

performance to within acceptable boundaries. Process variation is controlled by use of a

strategic business plan that details which product lines to pursue. Risks associated with

moving up the learning curve of a new application domain are known and carefully

managed. Process capability is measured and operating within measurable limits.

OPTIMIZING

Continuous process improvement is enabled by quantitative feedback. Continuous

process improvement is assessed from testing innovative ideas and technologies. Weak

process elements are identified and strengthened

Defect prevention is explicit. Statistical evidence is available on process effectiveness

Innovations that exploit the best software engineering practices are identified

 Improvement occurs from

 INCREMENTAL ADVANCEMENTS IN EXISTING PROCESSES

 INNOVATIONS USING NEW TECHNOLOGIES AND METHODS

Software Maturity Framework

A software product is produced using some combination of tools and

methods. This combination of tools and methods is called the software

process. To address the problems encountered in developing software, we

must treat the entire software task as a process that can be controlled,

measured and improved.

The sequence of broad steps that an organization needs to follow in

order to improve the software process are as follows;

1) See: Study the current development process to understand its status.

2) Forsee: Develop a vision of the process status that needs to be

achieved.

3) Prioritize: Create a list of required actions for process improvement

in order of priority.

4) Plan: Make a feasible plan to accomplish those actions.

5) Resource: Allocate the various resources to implement and carry

through the plan.

6) Redo: Repeat the five steps above.

The Process Capability Maturity Model (CMM) was proposed by the Software

Engineering Institute (SEI) at Carnegie-Mellon University. According to

the CMM, the state of the software process can be categorized into one

of five maturity levels. These levels are as follows;

1. Initial: The process is brought under statistical control.

2. Repeatable: The process has repeatable statistical control made

possible by initiating rigorous project management of commitments,

costs, schedules, and changes.

3. Defined: The process has consistent implementation and provides a

basis for a better understanding of itself.

Chapter 14: Project and Process Learning and Maturity – Copyright 2009 – James R. Burns – Page 12

4. Managed: Comprehensive process measurements and analyses beyond those

of cost and schedule performance are being performed.

5. Optimizing: A foundation for continuing improvement and optimization

of the process has been established.

The optimizing process helps identify the areas of need and gives

direction on how to best fulfil them, provides concise and quantitative

information, and allows professionals to study work performance and to

see how to improve it.

Principles of Software Process Change

A software team contains usually a mix of talents ranging from unusually

talented to marginal. Such a team must be managed by a leader who leads

with the conviction that long term improvements are possible and

essential. The six basic principles of software process change are:

1. All major changes to the software process must originate at the top

level.

2. Personnel at all levels must be involved.

3. A knowledge of the current process is required for effective change.

4. Change is continuous.

5. A conscious effort and periodic reinforcement are needed for software

process changes to be retained.

6. Investment is required for software process improvement.

Once the decision to initiate process improvement has been made, these

are the key topics to focus on. To improve the software process, someone

needs to be the champion. Unplanned process improvement is wasteful. It

is pointless to automate of a poorly defined process. Improvements

should be made with caution with testing at every step. All personnel

should be adequately trained.

Changes must be handled with care or they will generate resistance. The

sequence of change involves an unfreezing step, the establishment of

resources to serve as change agents, planning, implementing and

communicating the change, and refreezing using education and training.

Software Process Assessment

Software process assessments help to identify the critical problems and

the priorities. This process is conducted by a team of professionals who

are well experienced. The process begins by identifying the areas needed

to be improved priority wise. Senior management needs to be committed to

the process by agreeing to participate personally.

Confidentiality is a must so that the assessors can talk to people to

uncover the real problem issues. The assessment will be of a waste of

Chapter 14: Project and Process Learning and Maturity – Copyright 2009 – James R. Burns – Page 13

time unless the site manager (who is the senior manager of the total

organization) personally participates by assigning qualified people and

by periodical reviews of the progress made by these plans. The

assessment team members should all be experienced software developers.

Four to six professionals typically form an adequate team, The

assessment team must have a set of ground rules where the site manager

as mentioned above and the assessment team leader should sign a written

agreement as proposed by the SEI. The team undergoes a training after

which the work begins. To get accurate information copies of work

products can be obtained from the respondents. Finally a written report

is given to the site manager and staff. Proper follow through is

necessary to implement the efforts towards improvement.

The Initial Process

The inability to deliver on schedule is often the rule and not an

exception in the case of software organizations. Management frustration

increases as new plans are successively missed.

Often programs need a lot more code than expected and as the programs

get larger, newer technical and management issues crop up and

automatically the costs increase.

The software scale affects the individual, the management system and

the technical methods and tools that are used. Most managers and

professionals start out writing small programs, that the larger scale

system comes as a hard surprise. So though they may not have trouble

writing and completing their own modules, they get increasingly

frustrated at having to coordinate with so many others too.

Unless proper planning at all levels are done then the problems of scale

will not be easily understood or anticipated when confronted with it. In

very large software systems the most severe problems are not really

obvious until it gets to the testing phase.

The solution out of this is to estimate, plan and manage the project.

Both levels of managers and software professionals must act responsibly

by first planning and then only committing themselves to a date when

faced with a problem.

Managing Software Organizations

The Management system's role is to ensure successful completion of the

projects. Now the foundation for proper software project management

is the discipline of commitment. A commitment involves a planned

completion date and a payment amount. The large software projects

involve the cooperative efforts of many individuals. Commitment begins

from the top level and their personal involvement will motivate the

others in the hierarchy. Product plans focus on the activities and

objectives of each project dealing with issues like function, cost,

Chapter 14: Project and Process Learning and Maturity – Copyright 2009 – James R. Burns – Page 14

schedule, and quality. Organizations have line and staff groups with

conflicting goals because line management focuses on getting the

product out of the door, while the staff is building the organization's

competence. Quarterly reviews should be conducted by the senior manager

as it provides a forum for resolving conflicts and monitoring progress.

The topics should typically include an assessment of project performance

against plan and the organization's performance against its goals.

Organizational improvement is a matter of priorities as by being

included in the quarterly reviews the item will get the priority

attention required to produce results. Each project area establishes its

own plans, which are reviewed prior to project initiation and then

periodically updated and re-reviewed.

These disparate planning systems are coupled through senior management

quarterly oversight reviews that provide the forum for resolving

conflicts and balancing resources between the line and staff

organizations.

In addition to the quarterly review process, management needs to

periodically assess project progress. This is accomplished through a

sequence of phase reviews held at key points in the project schedule.

In establishing a project management system, the first essential action

is to obtain agreement from the senior management team that such a

system is needed.

The Project Plan

The project plan provides a definition of each major task, an estimate

of the time and resources required, and a framework for management

review and control. It is developed at the beginning of a job and is

successively refined as the work progresses.

With rare exceptions, initial resource estimates and schedules are

unacceptable. This is not because the programmers are unresponsive, but

because the users generally want more than they can afford. If the job

doesn't fit the available schedule and resources, it must be either

pared down or the time and resources increased.

The elements of a software plan are, goals and objectives, a sound

conceptual design, Work Breakdown Structure (WBS), product estimates,

resource estimates, and the project schedule. In addition to defining

the work, this plan provides management the basis for periodically

reviewing and tracking progress against the plan.

The measure used in program size estimation should be reasonably easy to

use early in the project and readily measurable once the work is

completed. Subsequent comparison of the early estimates to the actual

measured product size then provides feedback to the estimators on how to

make more accurate estimates. Once an estimate of the amount of code to

be developed is obtained, this can be converted into the number of

Chapter 14: Project and Process Learning and Maturity – Copyright 2009 – James R. Burns – Page 15

programmer months and time required. From the total resource need, the

project schedule can be developed by spreading these resources over the

planned software engineering phases.

After the estimates and schedule are completed, the full development

plan is assembled in a complete package and circulated to all involved

groups for review and sign-off. At each phase review, the development

plan is updated. The schedule shows task status and current projections

compared to the plan. The most important single pre-requisite to good

software cost estimating is the establishment of an estimation group.

Version and Change Control

One of the fundamental activities of software engineering is change

management. Changes to the requirements can occur as a response when

testing is done and sometimes the original requirements may be changed.

These efforts require proper management due to the number of people

involved and the volume of change and this is called software

configuration management. The baseline is the official source for code

and the repository for all completed work. When tests are run and

problems are found and changes need to be made it is important to keep

track of revisions. The change log could include all the information.

The problem report is very important as it records every problem and

the precise conditions causing it. To implement these controls and

procedures, responsibility assignments are made for the configuration

manager, module ownership, and the Change Control Board(CCB).

The system library stores the development work products. This includes

the source and object code for every baseline and change, the test

cases, and the development tools. It has locks to prevent unauthorized

changes and the capability to build the various system configurations,

test drivers, and test scenarios or buckets required by development.

Software Quality Assurance

The role of Software Quality Assurance (SQA) is to assure management

that the software development work is performed the way it is supposed

to be. In small organizations it is possible for software managers to

monitor the work so closely that SQA work is not needed. Its prime

benefit to management is the assurance it provides them that their

directions are actually implemented. To be effective, SQA needs to work

closely with management but independently staffed with competent

professionals. The SQA organization is not responsible for producing

quality products or for making quality plans, these are development

jobs. SQA is responsible for auditing the quality actions of the line

organization and alerting management to any deviations. The SQA ought to

report to a person in a high level of management and not to a software

development manager in order to be of use.

Chapter 14: Project and Process Learning and Maturity – Copyright 2009 – James R. Burns – Page 16

If SQA fulfills its role, and if senior management refuses to allow

line management to commit or to ship products until the SQA issues have

been addressed, then SQA can help management improve product quality.

Each development and maintenance project should have a software quality

assurance plan that specifies its goals, the SQA tasks to be performed,

the standards against which the development work is to be measured, and

the procedures and organizational structure to be used.

The reasons why SQA teams fail is because of poor staffing, low

negotiating skills, often operates without approved development

standards, and not all software groups have real quality plans.

Software Standards

A standard is a rule or basis for comparison that is used to assess the

size, content, value, of quality of something.

Standards help the SQA people in doing their work. It is wise to make an

overall plan which combines the available standards, the priority needs,

the status of the projects, the available staff skills, and the means of

standard enforcement. Then one can go ahead and make a standards

development program. This work can be done by individuals or small

working groups of technical experts.

Standards must be kept current, but standards maintenance should not

involve a great deal of work. Frequent changes to a standard probably

means it covers a subject that is not ready for standardization. The

standards and procedures should also be reviewed at least once every

three or five years to ensure they are current and needed. Standards

enforcement is the basic role of the SQA organization.

Software Inspections

The fundamental purpose of inspections is to improve the quality of

programs by assisting the software engineers to recognize and correct

their errors. Inspections are enormously effective, and all software

organizations should use inspections, walkthroughs, or technical

reviews in all major aspects of their work. Inspections involve

requirements, design, implementation, testing, maintenance and

documentation.

Inspections help detect errors early in the development phase and help

to ensure that the appropriate parties work towards the right direction.

Positive results because of inspections have increased their popularity

in software organizations. Inspections are an important way to find

errors and they score over testing as they detect the mistakes much

earlier thus helping economically and saving time and effort too.

Inspections should be a required part of every well run software process

Software Testing

Chapter 14: Project and Process Learning and Maturity – Copyright 2009 – James R. Burns – Page 17

Software testing is the execution of a program to find its faults.

A test is an experiment and should be approached as such. White box

tests examine the basic design of the program and require that the

tester have detailed knowledge of the program's internal structure.

Black box tests examine the program to see if it meets the functional

specifications. Effective test planning starts with an overall

development plan that defines the functions, roles, and methods for all

test phases. Every test should be treated with careful control and at

the conclusion of a test a report with all the detail should be

produced. The different types of bugs can be classified. The test

results should be carefully analyzed to make decisions. Since

programmers are inherently incapable of bug testing their own programs,

special test groups can assume test responsibility. Unit test standards

can help the programmers to do a reasonable job of testing following

which the job can be transferred to a dedicated test group. As this

new group gains experience in finding bugs they will soon become extra

ordinarily effective at doing just that.

Software Configuration Management

Software Configuration Management (SCM) control over requirements and

specifications is needed to ensure that the product being built and

tested is what is wanted. SCM control must be maintained over the design

throughout system life to ensure integrity and maintainability. An SCM

plan can be developed and the specification is used as a basis for the

development work and as a reference for developing the functional,

system, and acceptance tests.

When changes are made, correspondingly data is updated to the code

change. Finally, for large projects and for all projects during the

maintenance phase, procedures are needed to handle the development of

simultaneous versions of the same program. The tools used to design,

implement, test, and maintain the software must also be maintained under

configuration control.

The purpose of software configuration status accounting is to maintain a

continuous record of the status of all baselined items. A software

configuration audit is periodically performed to ensure that the SCM

practices and procedures are rigorously followed

Defining the Software Process

Defining of the software process helps to give a framework to software

organizations. The conflicting needs for customization and

standardization can be met by establishing a process architecture with

standard unit or "kernel" process steps and rules for describing and

relating them. Customization is then achieved by their interconnection

Chapter 14: Project and Process Learning and Maturity – Copyright 2009 – James R. Burns – Page 18

into process models.

Models made of the software process are of 3 types- Universal(U) process

level, the Worldly(W) process level, and the Atomic (A) process level.

These are typically embodied in policies at the U level, procedures at

the W level, and standards at the A level.

Every software organization should establish a process architecture and

models suited to its own particular needs. The relationship between

management, control and support activities have a critical impact on

the behavior of the organization. Some guidelines on developing and

using a process architecture are, establish objectives, define the basic

process architecture, make sure it meets the needs of the projects, and

then enforce it as an overall process framework. Also remember that each

project, component and module is unique and its process should be

uniquely determined. In developing process architecture one can first

create a high level architecture and then slowly refine it a few steps

at a time. Areas where professionals need guidance should be given

priority.

The Software Engineering Process Group

The software process must have a framework which is well established

and this process can be changed depending on the nature and scale of

problems encountered

The Software Engineering Process Group(SEPG) can provide guidance as to

the areas needing change though the decision to make the change will

ultimately rest with the line management. The SEPG can be viewed as a

change agent and it is their responsibility to provide resources, to

track the progress and keeping the management informed

The SEPG must be staffed with competent software professionals and

each organization could staff the group depending on finance and

availability of men. This group could provide the technology support as

it maintains the process database which contains data on the entire

software engineering process. This group should not have to report to

line development management and instead could report to the same

executive reporting center as the SQA. This group in order to maintain

focus on its tasks should limit its focus on tasks that can be handled

effectively and quickly.

Data Gathering and Analysis

Software process data must be gathered with a clear objective or the

right information may take long in being recorded. The principles of

successful data gathering are, that the data must have a process model

made in order to be able to get to the specific information. It is an

expensive task and hence the goodwill of the management is essential.

The data gathering plan includes the user of the data, the need for the

Chapter 14: Project and Process Learning and Maturity – Copyright 2009 – James R. Burns – Page 19

data, method used to gather it and how it will be managed. Measurements

can also be objective or subjective, absolute or relative, explicit or

derived, dynamic or static, and predictive or explanatory. The main

objective in software engineering is the use of dynamic, absolute,

explicit measures to control the work that needs to get done.

Considerations in data analyzing are to understand the shortcomings of

the process and to effect change by providing the necessary resources.

Data gathering is of infinite help in analyzing the software process.

Managing Software Quality

Evaluation of a software development project is to examine the quality

of the product. This examination can help one understand the progress

made and can establish a framework for improvement. A superior

performance can be achieved by the management setting challenging goals,

making a plan for accomplishing those goals and keeping track of it by

reviews.

Quality of a product can be measured by, development, product,

acceptance, usage and repair. During initial project planning, a

quality plan is produced. This plan is documented, reviewed, and

compared with actual experience. It is possible to keep track of quality

performance by estimating the defect removal at each process stage and

the effects of quality in each stage can also be found. The purpose of

the whole exercise must be kept in mind, namely to motivate action and

not to evaluate people. A company that has a quality action plan will

always improve in its output whereas a company that always meets its

quality plans has little room for improvement.

Defect Prevention

Software development and maintenance can attribute most of its costs to

error finding and fixing. Once an error is found by inspections and

testing, then rework needs to be done. Defect prevention is mainly

instituted to give a focus for improving the process. Its fundamental

objective is to make sure errors are not repeated and it is a skill that

will take time to learn. Defects can be prevented when programmers

evaluate their own errors and this can be done when management makes a

strong commitment to quality. The process of defect prevention has a few

steps, reporting of the defect, an action plan for removing the defect

and then effective tracking of performance. Once this plan is put into

action results will show up by the end of six months and a

transformation of the organization can be observed.

Automating the Software Process

Automating the software process can improve the quality of work and the

Chapter 14: Project and Process Learning and Maturity – Copyright 2009 – James R. Burns – Page 20

strategy can be effectively put into action by being clear about the

changes needed to be made, feasibility and an orderly plan to work

towards it. Automation of the software environment must be convenient to

use and should have a conceptual schema that will encompass the

database, process data, and tool interfaces.

The basic steps required to establish a long- term automation plan are,

establish an Automation Focal Point, understand current automation

status, make an orderly assessment of the most promising available

environments and tools, start work on a common data model for the

software environment, and establish a common user interface.

After this the technology currently in use and the one that is being

planned must be mapped out. A team of experts that will determine the

impacts of the new technology and the support tools for it. Then a

review of each project's savings schedule should be made with enough

room for flexibility. Once this is completed then the savings schedule

for the organization as a whole can be submitted to the management to

get the approval needed. Above all, involve the financial people, and do

the work in detail. Without line management's commitment to these

savings, no approval is likely. It takes time to do it right but there

is no shorter way.

Contracting for Software

The software process is essentially an agreement or contract between

management and the development organization. One of the benefits of

establishing a software process is to be able to assess the status of a

project and thus progress can be known at various stages. Auditing of

the project helps to see evidence of project performance. There may be

different types of vendors and buyers in contracts but when both parties

are technically competent then the level of cooperation is greatly

increased .The basic system objectives are established at the outset,

where specific functional requirements are known , they are stated. A

documented plan is then produced foe establishing and validating the

requirements and the operational concept against these objectives, and a

joint requirements effort defines the system tasks with sufficient

precision to permit design to start.

Quantitative process tracking is when check points are given for a job

full completed. Quality can be monitored by making a plan where defect

injection , removal, inspection coverage, and inspection coverage are

included. Establishing SCM, SQA, SEPG(these fall in levels 1 and 2)

groups and other steps help to make the software process more mature.

But with all this it becomes more important for managers and

contracting officers to give technical leadership by setting goals and

striving to meet them .

Conclusion

Chapter 14: Project and Process Learning and Maturity – Copyright 2009 – James R. Burns – Page 21

All these approaches to making a mature software process are

straightforward and have been proven to be effective. The problems

addressed with regard to the software process have existed for a while.

Undoubtedly as the software process evolves newer approaches will be

found as people while confronting problems seek solutions. It is best to

get started on the road to improvement by getting competent people to

apply themselves to the making of a more mature software process. The

need is now as the software industry has touched all the important areas

of our daily life and it is important that fewer mistakes are made with

proper management.

Software Maturity Framework

A software product is produced using some combination of tools and

methods. This combination of tools and methods is called the software

process. To address the problems encountered in developing software, we

must treat the entire software task as a process that can be controlled,

measured and improved.

The sequence of broad steps that an organization needs to follow in

order to improve the software process are as follows;

1) See: Study the current development process to understand its status.

2) Forsee: Develop a vision of the process status that needs to be

achieved.

3) Prioritize: Create a list of required actions for process improvement

in order of priority.

4) Plan: Make a feasible plan to accomplish those actions.

5) Resource: Allocate the various resources to implement and carry

through the plan.

6) Redo: Repeat the five steps above.

The Process Capability Maturity Model (CMM) was proposed by the Software

Engineering Institute (SEI) at Carnegie-Mellon University. According to

the CMM, the state of the software process can be categorized into one

of five maturity levels. These levels are as follows;

1. Initial: The process is brought under statistical control.

2. Repeatable: The process has repeatable statistical control made

possible by initiating rigorous project management of commitments,

costs, schedules, and changes.

3. Defined: The process has consistent implementation and provides a

basis for a better understanding of itself.

4. Managed: Comprehensive process measurements and analyses beyond those

of cost and schedule performance are being performed.

5. Optimizing: A foundation for continuing improvement and optimization

Chapter 14: Project and Process Learning and Maturity – Copyright 2009 – James R. Burns – Page 22

of the process has been established.

The optimizing process helps identify the areas of need and gives

direction on how to best fulfil them, provides concise and quantitative

information, and allows professionals to study work performance and to

see how to improve it.

Principles of Software Process Change

A software team contains usually a mix of talents ranging from unusually

talented to marginal. Such a team must be managed by a leader who leads

with the conviction that long term improvements are possible and

essential. The six basic principles of software process change are:

1. All major changes to the software process must originate at the top

level.

2. Personnel at all levels must be involved.

3. A knowledge of the current process is required for effective change.

4. Change is continuous.

5. A conscious effort and periodic reinforcement are needed for software

process changes to be retained.

6. Investment is required for software process improvement.

Once the decision to initiate process improvement has been made, these

are the key topics to focus on. To improve the software process, someone

needs to be the champion. Unplanned process improvement is wasteful. It

is pointless to automate of a poorly defined process. Improvements

should be made with caution with testing at every step. All personnel

should be adequately trained.

Changes must be handled with care or they will generate resistance. The

sequence of change involves an unfreezing step, the establishment of

resources to serve as change agents, planning, implementing and

communicating the change, and refreezing using education and training.

Software Process Assessment

Software process assessments help to identify the critical problems and

the priorities. This process is conducted by a team of professionals who

are well experienced. The process begins by identifying the areas needed

to be improved priority wise. Senior management needs to be committed to

the process by agreeing to participate personally.

Confidentiality is a must so that the assessors can talk to people to

uncover the real problem issues. The assessment will be of a waste of

time unless the site manager (who is the senior manager of the total

organization) personally participates by assigning qualified people and

by periodical reviews of the progress made by these plans. The

Chapter 14: Project and Process Learning and Maturity – Copyright 2009 – James R. Burns – Page 23

assessment team members should all be experienced software developers.

Four to six professionals typically form an adequate team, The

assessment team must have a set of ground rules where the site manager

as mentioned above and the assessment team leader should sign a written

agreement as proposed by the SEI. The team undergoes a training after

which the work begins. To get accurate information copies of work

products can be obtained from the respondents. Finally a written report

is given to the site manager and staff. Proper follow through is

necessary to implement the efforts towards improvement.

The Initial Process

The inability to deliver on schedule is often the rule and not an

exception in the case of software organizations. Management frustration

increases as new plans are successively missed.

Often programs need a lot more code than expected and as the programs

get larger, newer technical and management issues crop up and

automatically the costs increase.

The software scale affects the individual, the management system and

the technical methods and tools that are used. Most managers and

professionals start out writing small programs, that the larger scale

system comes as a hard surprise. So though they may not have trouble

writing and completing their own modules, they get increasingly

frustrated at having to coordinate with so many others too.

Unless proper planning at all levels are done then the problems of scale

will not be easily understood or anticipated when confronted with it. In

very large software systems the most severe problems are not really

obvious until it gets to the testing phase.

The solution out of this is to estimate, plan and manage the project.

Both levels of managers and software professionals must act responsibly

by first planning and then only committing themselves to a date when

faced with a problem.

Managing Software Organizations

The Management system's role is to ensure successful completion of the

projects. Now the foundation for proper software project management

is the discipline of commitment. A commitment involves a planned

completion date and a payment amount. The large software projects

involve the cooperative efforts of many individuals. Commitment begins

from the top level and their personal involvement will motivate the

others in the hierarchy. Product plans focus on the activities and

objectives of each project dealing with issues like function, cost,

schedule, and quality. Organizations have line and staff groups with

conflicting goals because line management focuses on getting the

product out of the door, while the staff is building the organization's

Chapter 14: Project and Process Learning and Maturity – Copyright 2009 – James R. Burns – Page 24

competence. Quarterly reviews should be conducted by the senior manager

as it provides a forum for resolving conflicts and monitoring progress.

The topics should typically include an assessment of project performance

against plan and the organization's performance against its goals.

Organizational improvement is a matter of priorities as by being

included in the quarterly reviews the item will get the priority

attention required to produce results. Each project area establishes its

own plans, which are reviewed prior to project initiation and then

periodically updated and re-reviewed.

These disparate planning systems are coupled through senior management

quarterly oversight reviews that provide the forum for resolving

conflicts and balancing resources between the line and staff

organizations.

In addition to the quarterly review process, management needs to

periodically assess project progress. This is accomplished through a

sequence of phase reviews held at key points in the project schedule.

In establishing a project management system, the first essential action

is to obtain agreement from the senior management team that such a

system is needed.

The Project Plan

The project plan provides a definition of each major task, an estimate

of the time and resources required, and a framework for management

review and control. It is developed at the beginning of a job and is

successively refined as the work progresses.

With rare exceptions, initial resource estimates and schedules are

unacceptable. This is not because the programmers are unresponsive, but

because the users generally want more than they can afford. If the job

doesn't fit the available schedule and resources, it must be either

pared down or the time and resources increased.

The elements of a software plan are, goals and objectives, a sound

conceptual design, Work Breakdown Structure (WBS), product estimates,

resource estimates, and the project schedule. In addition to defining

the work, this plan provides management the basis for periodically

reviewing and tracking progress against the plan.

The measure used in program size estimation should be reasonably easy to

use early in the project and readily measurable once the work is

completed. Subsequent comparison of the early estimates to the actual

measured product size then provides feedback to the estimators on how to

make more accurate estimates. Once an estimate of the amount of code to

be developed is obtained, this can be converted into the number of

programmer months and time required. From the total resource need, the

project schedule can be developed by spreading these resources over the

planned software engineering phases.

Chapter 14: Project and Process Learning and Maturity – Copyright 2009 – James R. Burns – Page 25

After the estimates and schedule are completed, the full development

plan is assembled in a complete package and circulated to all involved

groups for review and sign-off. At each phase review, the development

plan is updated. The schedule shows task status and current projections

compared to the plan. The most important single pre-requisite to good

software cost estimating is the establishment of an estimation group.

Version and Change Control

One of the fundamental activities of software engineering is change

management. Changes to the requirements can occur as a response when

testing is done and sometimes the original requirements may be changed.

These efforts require proper management due to the number of people

involved and the volume of change and this is called software

configuration management. The baseline is the official source for code

and the repository for all completed work. When tests are run and

problems are found and changes need to be made it is important to keep

track of revisions. The change log could include all the information.

The problem report is very important as it records every problem and

the precise conditions causing it. To implement these controls and

procedures, responsibility assignments are made for the configuration

manager, module ownership, and the Change Control Board(CCB).

The system library stores the development work products. This includes

the source and object code for every baseline and change, the test

cases, and the development tools. It has locks to prevent unauthorized

changes and the capability to build the various system configurations,

test drivers, and test scenarios or buckets required by development.

Software Quality Assurance

The role of Software Quality Assurance (SQA) is to assure management

that the software development work is performed the way it is supposed

to be. In small organizations it is possible for software managers to

monitor the work so closely that SQA work is not needed. Its prime

benefit to management is the assurance it provides them that their

directions are actually implemented. To be effective, SQA needs to work

closely with management but independently staffed with competent

professionals. The SQA organization is not responsible for producing

quality products or for making quality plans, these are development

jobs. SQA is responsible for auditing the quality actions of the line

organization and alerting management to any deviations. The SQA ought to

report to a person in a high level of management and not to a software

development manager in order to be of use.

If SQA fulfills its role, and if senior management refuses to allow

line management to commit or to ship products until the SQA issues have

been addressed, then SQA can help management improve product quality.

Chapter 14: Project and Process Learning and Maturity – Copyright 2009 – James R. Burns – Page 26

Each development and maintenance project should have a software quality

assurance plan that specifies its goals, the SQA tasks to be performed,

the standards against which the development work is to be measured, and

the procedures and organizational structure to be used.

The reasons why SQA teams fail is because of poor staffing, low

negotiating skills, often operates without approved development

standards, and not all software groups have real quality plans.

Software Standards

A standard is a rule or basis for comparison that is used to assess the

size, content, value, of quality of something.

Standards help the SQA people in doing their work. It is wise to make an

overall plan which combines the available standards, the priority needs,

the status of the projects, the available staff skills, and the means of

standard enforcement. Then one can go ahead and make a standards

development program. This work can be done by individuals or small

working groups of technical experts.

Standards must be kept current, but standards maintenance should not

involve a great deal of work. Frequent changes to a standard probably

means it covers a subject that is not ready for standardization. The

standards and procedures should also be reviewed at least once every

three or five years to ensure they are current and needed. Standards

enforcement is the basic role of the SQA organization.

Software Inspections

The fundamental purpose of inspections is to improve the quality of

programs by assisting the software engineers to recognize and correct

their errors. Inspections are enormously effective, and all software

organizations should use inspections, walkthroughs, or technical

reviews in all major aspects of their work. Inspections involve

requirements, design, implementation, testing, maintenance and

documentation.

Inspections help detect errors early in the development phase and help

to ensure that the appropriate parties work towards the right direction.

Positive results because of inspections have increased their popularity

in software organizations. Inspections are an important way to find

errors and they score over testing as they detect the mistakes much

earlier thus helping economically and saving time and effort too.

Inspections should be a required part of every well run software process

Software Testing

Software testing is the execution of a program to find its faults.

A test is an experiment and should be approached as such. White box

Chapter 14: Project and Process Learning and Maturity – Copyright 2009 – James R. Burns – Page 27

tests examine the basic design of the program and require that the

tester have detailed knowledge of the program's internal structure.

Black box tests examine the program to see if it meets the functional

specifications. Effective test planning starts with an overall

development plan that defines the functions, roles, and methods for all

test phases. Every test should be treated with careful control and at

the conclusion of a test a report with all the detail should be

produced. The different types of bugs can be classified. The test

results should be carefully analyzed to make decisions. Since

programmers are inherently incapable of bug testing their own programs,

special test groups can assume test responsibility. Unit test standards

can help the programmers to do a reasonable job of testing following

which the job can be transferred to a dedicated test group. As this

new group gains experience in finding bugs they will soon become extra

ordinarily effective at doing just that.

Software Configuration Management

Software Configuration Management (SCM) control over requirements and

specifications is needed to ensure that the product being built and

tested is what is wanted. SCM control must be maintained over the design

throughout system life to ensure integrity and maintainability. An SCM

plan can be developed and the specification is used as a basis for the

development work and as a reference for developing the functional,

system, and acceptance tests.

When changes are made, correspondingly data is updated to the code

change. Finally, for large projects and for all projects during the

maintenance phase, procedures are needed to handle the development of

simultaneous versions of the same program. The tools used to design,

implement, test, and maintain the software must also be maintained under

configuration control.

The purpose of software configuration status accounting is to maintain a

continuous record of the status of all baselined items. A software

configuration audit is periodically performed to ensure that the SCM

practices and procedures are rigorously followed

Defining the Software Process

Defining of the software process helps to give a framework to software

organizations. The conflicting needs for customization and

standardization can be met by establishing a process architecture with

standard unit or "kernel" process steps and rules for describing and

relating them. Customization is then achieved by their interconnection

into process models.

Models made of the software process are of 3 types- Universal(U) process

level, the Worldly(W) process level, and the Atomic (A) process level.

Chapter 14: Project and Process Learning and Maturity – Copyright 2009 – James R. Burns – Page 28

These are typically embodied in policies at the U level, procedures at

the W level, and standards at the A level.

Every software organization should establish a process architecture and

models suited to its own particular needs. The relationship between

management, control and support activities have a critical impact on

the behavior of the organization. Some guidelines on developing and

using a process architecture are, establish objectives, define the basic

process architecture, make sure it meets the needs of the projects, and

then enforce it as an overall process framework. Also remember that each

project, component and module is unique and its process should be

uniquely determined. In developing process architecture one can first

create a high level architecture and then slowly refine it a few steps

at a time. Areas where professionals need guidance should be given

priority.

The Software Engineering Process Group

The software process must have a framework which is well established

and this process can be changed depending on the nature and scale of

problems encountered

The Software Engineering Process Group(SEPG) can provide guidance as to

the areas needing change though the decision to make the change will

ultimately rest with the line management. The SEPG can be viewed as a

change agent and it is their responsibility to provide resources, to

track the progress and keeping the management informed

The SEPG must be staffed with competent software professionals and

each organization could staff the group depending on finance and

availability of men. This group could provide the technology support as

it maintains the process database which contains data on the entire

software engineering process. This group should not have to report to

line development management and instead could report to the same

executive reporting center as the SQA. This group in order to maintain

focus on its tasks should limit its focus on tasks that can be handled

effectively and quickly.

Data Gathering and Analysis

Software process data must be gathered with a clear objective or the

right information may take long in being recorded. The principles of

successful data gathering are, that the data must have a process model

made in order to be able to get to the specific information. It is an

expensive task and hence the goodwill of the management is essential.

The data gathering plan includes the user of the data, the need for the

data, method used to gather it and how it will be managed. Measurements

can also be objective or subjective, absolute or relative, explicit or

derived, dynamic or static, and predictive or explanatory. The main

Chapter 14: Project and Process Learning and Maturity – Copyright 2009 – James R. Burns – Page 29

objective in software engineering is the use of dynamic, absolute,

explicit measures to control the work that needs to get done.

Considerations in data analyzing are to understand the shortcomings of

the process and to effect change by providing the necessary resources.

Data gathering is of infinite help in analyzing the software process.

Managing Software Quality

Evaluation of a software development project is to examine the quality

of the product. This examination can help one understand the progress

made and can establish a framework for improvement. A superior

performance can be achieved by the management setting challenging goals,

making a plan for accomplishing those goals and keeping track of it by

reviews.

Quality of a product can be measured by, development, product,

acceptance, usage and repair. During initial project planning, a

quality plan is produced. This plan is documented, reviewed, and

compared with actual experience. It is possible to keep track of quality

performance by estimating the defect removal at each process stage and

the effects of quality in each stage can also be found. The purpose of

the whole exercise must be kept in mind, namely to motivate action and

not to evaluate people. A company that has a quality action plan will

always improve in its output whereas a company that always meets its

quality plans has little room for improvement.

Defect Prevention

Software development and maintenance can attribute most of its costs to

error finding and fixing. Once an error is found by inspections and

testing, then rework needs to be done. Defect prevention is mainly

instituted to give a focus for improving the process. Its fundamental

objective is to make sure errors are not repeated and it is a skill that

will take time to learn. Defects can be prevented when programmers

evaluate their own errors and this can be done when management makes a

strong commitment to quality. The process of defect prevention has a few

steps, reporting of the defect, an action plan for removing the defect

and then effective tracking of performance. Once this plan is put into

action results will show up by the end of six months and a

transformation of the organization can be observed.

Automating the Software Process

Automating the software process can improve the quality of work and the

strategy can be effectively put into action by being clear about the

changes needed to be made, feasibility and an orderly plan to work

towards it. Automation of the software environment must be convenient to

Chapter 14: Project and Process Learning and Maturity – Copyright 2009 – James R. Burns – Page 30

use and should have a conceptual schema that will encompass the

database, process data, and tool interfaces.

The basic steps required to establish a long- term automation plan are,

establish an Automation Focal Point, understand current automation

status, make an orderly assessment of the most promising available

environments and tools, start work on a common data model for the

software environment, and establish a common user interface.

After this the technology currently in use and the one that is being

planned must be mapped out. A team of experts that will determine the

impacts of the new technology and the support tools for it. Then a

review of each project's savings schedule should be made with enough

room for flexibility. Once this is completed then the savings schedule

for the organization as a whole can be submitted to the management to

get the approval needed. Above all, involve the financial people, and do

the work in detail. Without line management's commitment to these

savings, no approval is likely. It takes time to do it right but there

is no shorter way.

Contracting for Software

The software process is essentially an agreement or contract between

management and the development organization. One of the benefits of

establishing a software process is to be able to assess the status of a

project and thus progress can be known at various stages. Auditing of

the project helps to see evidence of project performance. There may be

different types of vendors and buyers in contracts but when both parties

are technically competent then the level of cooperation is greatly

increased .The basic system objectives are established at the outset,

where specific functional requirements are known , they are stated. A

documented plan is then produced foe establishing and validating the

requirements and the operational concept against these objectives, and a

joint requirements effort defines the system tasks with sufficient

precision to permit design to start.

Quantitative process tracking is when check points are given for a job

full completed. Quality can be monitored by making a plan where defect

injection , removal, inspection coverage, and inspection coverage are

included. Establishing SCM, SQA, SEPG(these fall in levels 1 and 2)

groups and other steps help to make the software process more mature.

But with all this it becomes more important for managers and

contracting officers to give technical leadership by setting goals and

striving to meet them .

Conclusion

All these approaches to making a mature software process are

straightforward and have been proven to be effective. The problems

Chapter 14: Project and Process Learning and Maturity – Copyright 2009 – James R. Burns – Page 31

addressed with regard to the software process have existed for a while.

Undoubtedly as the software process evolves newer approaches will be

found as people while confronting problems seek solutions. It is best to

get started on the road to improvement by getting competent people to

apply themselves to the making of a more mature software process. The

need is now as the software industry has touched all the important areas

of our daily life and it is important that fewer mistakes are made with

proper management.

Towards a Project Management Curriculum

Basics: lifecycle

Scheduling

Conflict management

Change management

Negotiations

Program management

